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Abstract
In this letter we will extend the analysis given by Zamolodchikov for the
scaling Yang–Lee model on the sphere to the Ising model in a magnetic field.
A numerical study of the partition function and of the vacuum expectation
values is done by using the truncated conformal space approach. Our results
strongly suggest that the partition function is an entire function of the coupling
constant.

PACS numbers: 05.50.+q, 75.10.Hk, 11.10.Kk

1. Introduction

Quantum field theories on curved (fixed) background have attracted much attention and have
been explored for a long time [1]. The main reason for studying them is their importance
as a first step towards the understanding of quantum gravity. In this letter we will consider
2D conformal field theories (CFT) and their perturbations on a spherical background. Apart
from their relevance in order to understand 2D quantum gravity, the theories on the sphere can
be considered as infrared regularizations of the corresponding theories defined on the infinite
plane; these latter can in general be recovered in the limit of infinite radius. This natural cut-off
avoids the presence of infrared divergences in the perturbative theory and various physical
quantities are analytic in the coupling constant λ at λ = 0 (see also footnote 5).

In a recent paper Zamolodchikov [2] proposed a novel way to study the partition function
of the scaling Yang–Lee model on the sphere. Motivated by a numerical analysis he suggested
that such partition function is an entire function of the coupling constant. Assuming that this
conjecture is true, one can get useful information about the large R limit (R being the radius of
the sphere) from the knowledge of the first few terms of the expansion coming from conformal
perturbation theory.
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It is interesting to test this approach considering other relevant perturbations of minimal
models, in particular we will study the Ising model perturbed by a magnetic field. The former
conjecture has been confirmed analytically [2] in the case of the thermal perturbation of the
Ising model resorting to the fact that it is equivalent to a free massive Majorana fermion. The
present case is less trivial (it is not a free theory) and requires to be investigated with the same
numerical methods employed in [2]. In particular we address two main issues: the asymptotic
behaviour of the vacuum expectation values (VEV) on the sphere; the asymptotic location of
the zeroes of the partition function.

This letter is organized as follows. In section 2 we will briefly introduce CFT on the
sphere and the perturbed theory. In section 3 we will describe the numerical results and finally
in section 4 we will give our conclusions.

2. Ising model in a magnetic field

In the recent past, conformal field theories (and in particular minimal models) have been
studied on a general Riemann surface [3]. In the following we will deal with models defined
on a sphere3, the simplest non-trivial example of curved geometry. In particular, we will
consider the first model of the minimal unitary series, i.e. the Ising model. It is characterized
by a set of primary fields φi (1, σ and ε) which transform in the following way:

δφi(x) = −�iφi(x)δχ(x) gab = eχδab (1)

under a Weyl transformation

δgab(x) = gab(x)δχ(x) (2)

where

eχ(x) = 4R2

1 + zz̄
(3)

is the Weil factor of the metric, �i are the conformal weights of primary fields, given
respectively by 0, 1/16 and 1/2.

The trace of the energy–momentum tensor in CFTs defined upon non-trivial geometric
backgrounds plays a central role. In fact, it gives a quantitative characterization of the effect
of a change in the geometry. Its explicit form for the case of the sphere (with radius R) is
given by

θ(x) = − c

12
R̂ (4)

where R̂ = 2
R2 is the scalar curvature of the sphere and c = 1/2 is the central charge.

By equation (4) and by the definition of θ(x) in terms of the partition function ZCFT(R)

one gets the relation

ZCFT(R) = Rc/3Z0 (5)

where Z0 = ZCFT(1).
As shown in [2], the action of a CFT perturbed by a relevant operator is given by

Sλ = SCFT +
λ

2π

∫
σ(x) eχ(x) d2x. (6)

SCFT is the action of the Ising model on the sphere and σ(x) is the perturbing operator. The
partition function Zλ(R) can be calculated in the regimes of both small and large values of R.
3 We assume that there are no conical singularities and the metric is smooth. In the presence of conical singularities
there are metric-dependent terms in the partition function [5] .
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In the first case, expanding in λ and defining

h = λ(2R)2−2�σ (7)

and

z(h) = Zλ(R)

Z0Rc/3
(8)

one gets

z(h) =
∞∑

n=0

(−h)nzn (9)

where z0 = 1 and

zn = π

(2π)nn!

∫
〈σ(0) · · · σ(yn)〉

n∏
i=2

d2yi

(1 + yi ȳi)2−2�σ
. (10)

and the correlators are calculated in the conformal theory on the plane. By using the fusion
rules of the Ising model it is easy to show that only even coefficients are different from zero.

In [2], it is conjectured that this series is absolutely convergent and defines an entire
function of h.

A large R expansion can be obtained by using the formula

δ〈X〉 = − 1

4π

∫
〈θ(x)X〉 eχ(x)δχ(x) d2x (11)

which gives the variation of 〈X〉 in terms of insertions of θ(x). By applying this formula to
θ(0) one gets

〈θ(0)〉sphere ∼ 4πEvac +
b1

R4
+

2b2

R6
+ · · · (12)

where A is defined in terms of vacuum energy in flat space:

Evac = −Aλ1/(1−�σ ) (13)

and the coefficients bi can be expressed in terms of integrals of higher flat correlation functions
of θ .

The derivative of the partition function with respect to R is given by

d log Zλ(R)

dR2
= −〈θ〉 (14)

and combining (12) and (14) it follows that

log
Zλ(R)

Z0
∼ −4πR2Evac + log(z∞) +

b1

R2
+

b2

R4
+ · · · . (15)

It is better to express everything in terms of h to get

log z(h) = πAh1/(1−�σ ) + log(2c/3z∞) − c

6 − 6�σ

log h + a1h
−1/(1−�σ ) + · · · (16)

where z∞ = λc/(6−6�σ )Z∞ and a1 = 4b1λ
(1/(1−�σ ) . . . .
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2.1. Vacuum expectation values

We will be interested also in one-point functions of relevant operators (VEV), which in flat
space give essential information about short-distance expansion of correlation functions.

By expressing λ in terms of h and defining

G
(h) ≡ (2R)2�σ 〈
(0)〉λ (17)

one can show that

G
(h) =
∞∑

n=1

gn(−h)n (18)

where

gn = 1

(2π)nn!

∫
〈
(0)σ (x1) · · · σ(xn)〉c

n∏
i=1

d2xi

(1 + xi x̄i)2−2�
(19)

and the subscript c means connected with respect to 
(0).
Using (11) it is also possible to write a large R expansion of the form

G
(h) = A
h
�


1−�σ + a1h
− �
−1

�σ −1 + · · · . (20)

We recall that, in our normalizations, the VEV of a primary field on the plane is given by

〈
〉λ = A


(
λ

2π

) �

1−�σ

. (21)

There exists a simple relation between the VEV of the perturbing operator and the derivative
of the partition function,

Gσ(h) = −2
z′(h)

z(h)
= d

dh
log z(h) (22)

and if z(h) is an entire function the same is true for z′(h) (the unnormalized VEV of the
perturbing operator). It follows that, the asymptotic expansion for Gσ(h) is given by

Gσ(h) = − 2πA

1 − �σ

h
�σ

(1−�σ ) +
c

3 − 3�σ

h−1 + · · · . (23)

As a result, in the h → ∞ limit, the usual relation between A and the amplitude of the
perturbing operator holds:

Aσ = A

1 − �σ

. (24)

3. Numerical results

3.1. VEVs on the plane

The truncated conformal space (TCS) approach enables us to study numerically the behaviour
of both the VEVs and the partition function of the model. The aim of this section is to give
an estimate of the VEVs of the primary operators of the Ising model, i.e. magnetization
and energy, in the limit of infinite plane by means of the asymptotic formulae of section 2.1.
Since the model is defined on the sphere, in the large h limit we shall be able to recover the
amplitudes A
, with 
 ≡ σ, ε, obtained on the plane, whose value is exactly known [6].

Our strategy proceeds as follows: first, we fit the data obtained from the TCS technique by
means of the expansion of section 2.1 at finite values of the truncation level N (we considered
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N = 10, 11, 12, 13, 14) in an interval of the variable h ranging from 150 to 200 (this choice
is motivated by the requirement to be in an asymptotic region where truncation artefacts are
not present); second, we perform an extrapolation of the VEVs Aφ(N) to the limit N → ∞
by means of the following (conjectured, see [4]) law:

Aφ(N) = Aφ(∞) + A1
φN−x + · · · (25)

where the constant Aφ(∞) is the extrapolated value of the amplitude A
. In order to get rid
of possible systematic errors, the fitting procedure we used is the same as in [7]. In this way,
we obtained the estimates for the amplitudes4 Aσ and Aε :

Aσ = 1.27759(6) Aε = 2.004(8) (26)

which are in perfect agreement with both their theoretical values and the existing numerical
estimates.

3.2. Analyticity properties of the partition function

Let us consider the case of pure imaginary values of the coupling h. One can see that the
asymptotic behaviour of the partition function changes dramatically, becoming oscillatory and
showing a well-defined pattern of zeros. Such zeros are approximatively located at (when the
leading order in the asymptotic expansion is considered, see [2])

−ih(a)
n =

[
Aπ sin

(
π

2 − 2d

)]d−1 (
πc

12 − 12d
+

π

2
+ nπ

)1−d

=
[
A sin

(
8π

15

)]−15/16 (
n +

49

90

)15/16

n � 0 (27)

where for the Ising model we have c = 1/2, d = 1/16, A = 0.16 8564 · · · (we used the
same notation as in [2]). Hence, one could ask whether the hypothesis of [2] to consider the
partition function as an entire function is compatible with numerical data also in the present
case. Taking advantage of the TCS approach, we were able to compute numerically the
partition function for the following values of the truncation level N = 10, 11, 12. Figure 1
shows such numerical results together with the plot of the asymptotic expansion (truncated
at the leading order). Furthermore, one can compare the asymptotic location of zeros with
the corresponding numerical estimates coming from the TCS approach. The result of such
comparison is shown in table 1. It is interesting to check the validity of (27) against the exact
sum rule [2]:

∞∑
n=0

1

h2
n

= 1

7
= 0.14 2857 . . . . (28)

Plugging (27) in the previous expression, we obtain
∞∑

n=0

1(
h

(a)
n

)2 = 0.14 6549 . . . (29)

which is below 3% of accuracy with respect to the exact result.
The previous findings strongly suggest that the partition function can be considered as an

entire function of the coupling h.

4 Their actual value is written using the standard normalization, see e.g. [6], where the factor 2π in (6) is absent. It

is simply obtained by replacing A
 → A
(2π)
�


�σ −1 .
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z

Figure 1. Behaviour of the partition function z(ih). The solid line represents the asymptotic
behaviour and dots show TCS approach results.

Table 1. The comparison between asymptotic formula (27) and TCS approach is shown at different
values of the truncation level N. The agreement improves for higher values of h.

Asymptotic N = 10 N = 11 N = 12

3.017 17 3.068 82 3.068 86 3.068 88
8.018 96 8.031 76 8.032 33 8.032 36

12.8052 12.8043 12.8058 12.8064
17.4721 17.4603 17.4631 17.4643
22.0563 22.0296 22.0334 22.0353
26.5773 26.5378 26.5457 26.5485
31.0474 30.9807 31.0007 31.0053
35.4748 35.3684 35.4153 35.4231
39.8655 39.6865 39.7763 39.7903
44.2242 43.9406 44.0895 44.1134

As a final remark, we could ignore the exact knowledge of A and try to estimate it taking
advantage of both the sum rules and formula (27). The numerical result

Aasy = 1

sin 8
15π

(7ζ(15/8, 49/90))−8/15 = 0.1663 . . .

is remarkably near to the exact one A = 0.16 8564 . . . .

4. Conclusions

Our results show that the partition function of the Ising model on the sphere may have
interesting analytical properties in the coupling h.

The present case, together with the Yang–Lee model considered by Zamolodchikov in [2],
seems to suggest the conjecture that all the perturbed rational conformal field theories (RCFTs)
(when the perturbation is relevant) share similar analytic properties in their observables. In
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particular, a proof of the convergence of the series defining the partition function should be
welcome. An attempt in this direction could be tried along the same lines of the proof of
convergence of strongly relevant (2� < 1) perturbations of RCFTs in finite volume [10].

It would also be interesting to establish if there is a relation between the integrability of
these models on the plane and their analytical properties on the sphere. In this perspective,
some clarification could come from the study of a non-integrable perturbation5 of a given
minimal model (e.g., the most relevant magnetic perturbation of the tricritical Ising model).
Finally, we would like to stress that the VEV of primary (relevant) operators in the limit of
infinite plane (R → ∞) can be extracted with good precision using the TCS approach.
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